Uranium generates that energy by fission. The hydrogen in sugar could generate huge amounts of energy if fused.
And this boulder could generate huge amounts of energy if I pushed it up to the top of Mt. Kilimanjaro and let it roll down.
44 upvotes and 0 downvotes for a comment that doesn’t understand that energy density measurements like this tend to measure the useful energy of a system.
It’s disappointing that natural selection didn’t figure out fusion.
It figured out photosynthesis instead. Why do your own fusion when you can just take advantage of the fusion that’s already happening?
Whilst I get your point, their point is still valid in the sense that you just can’t extract that energy from gasoline in a more efficient manner than just burning it. For practical purposes, gasoline truly is that much less energy dense.
Bah, that graph needs antimatter.
Is there enough paper on earth?
Yes boss, I did work out the dynamic range of that log amplifier we wanted to use in our next product’s sensor PCB, it’s 80dB.
The results are over here. (points to a roll of A-4 paper)
It has 40 data points and only took me 1 week, 10 pencils, and 20 erasers to plot the chart. Yeah I can present it, it’ll take me 10 minutes to roll it out, pin it down, and fetch the A-frame ladder.
Jerry Hathaway still wants 5 megawatts by mid-May.
You win the Internet today!!!
Holy crap, my only ambition was lovely parting gifts!
deleted by creator
Weird thing I’ve noticed:
Logs are taught in high school. Absolutely no one seems to remember what they are after the unit test, much less high school. I’ve even reminded other math instructors about how to use them.
Why do people have such a hard time learning to use and understand logs?
I love this comic, and it’s going to replace my weird “let’s talk about how this makes the distance between us and Alpha Centauri, and us and Earendil easier to understand” bit.
log to the base 76000000
deleted by creator